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ABSTRACT 
 
Ground improvement using glass-fibre structural elements ahead of the face of a tunnel, as employed 
in the ADECO-RS approach, is not merely a construction practice employed to solve complex 
conditions of instability at the face, but an important instrument to be used in a balanced fashion with 
other stabilisation instruments to produce a reliable design for fast and industrialised construction 
(within budgets and on schedule). This is what has been demonstrated in Italy by the abundant 
evidence and final data obtained from the construction of more than 100 km of tunnel on the new high 
speed/capacity railway line between Bologna and Florence. 
 

1. INTRODUCTION 
 
Tunnel construction on the Apennines section between Bologna and Florence of the new Milan-Rome-
Naples high speed/capacity railway line finished after less than six years since the first excavation of 
the running tunnels started. Today, the route from Bologna to Florence with more than 70 km of twin 
track tunnel, which has a cross section of 140 sq. m. is all open and work is currently in progress to put 
the finish on the tunnel walls and lay the railway tracks. 
This was a pilot experience for the whole of the major infrastructure sector and not just because the 
project was awarded to a single general contractor for the first time in Italy, but also because of the 
technical difficulties that had to be overcome. The geological and geotechnical context appeared to be 
and in fact was one of the most difficult and complex in the world. A broad and heterogeneous variety 
of grounds had to be tunnelled, affected by groundwater and gas at times and under overburdens 
ranging from nil to very deep. 
A new design and construction approach was selected to tackle the heterogeneity of the materials and 
conditions, which is based on the “Analysis of the COntrolled DEformation in Rocks and Soils” 
(ADECO-RS). By using this approach, which is based on a clear distinction between the design stage 
and the construction stage of tunnels, it was possible to reliably estimate construction costs and times 
for the project in advance and this in turn made it possible to award contracts for the work on a lump 
sum “turnkey” basis for the first time in the history of underground works for projects of these 
dimensions and difficulty. 
Other important characteristics of the ADECO-RS approach are the centrality of the deformation 
response of the ground to the action of excavation and the use of full face advance employed even 
under the most difficult conditions after first using the core of ground ahead of the face (appropriately 
protected or reinforced) as a structural element capable of guaranteeing the formation of  an “arch 
effect” close to the walls of an excavation and therefore also the long and short term stability of a 
tunnel. 
On conclusion of any pilot experience, whether large or small, it is important and necessary to 
examine the results achieved at the end of the day to assess the effectiveness and the real potential of 
the innovations introduced. 



The length of the alignment that runs underground, the heterogeneity of the ground tunnelled and the 
extremely difficult stress-strain conditions to be overcome on the section between Bologna and 
Florence of the new high speed/capacity Milan-Rome-Naples railway line, certainly constituted a 
severe test of the actual capacity of this new design and construction approach to come up to 
expectations. This paper furnishes an initial illustration of what emerged and the results that were 
achieved. 
 
 
2. GENERAL BACKGROUND OF THE PROJECT 
 
The new railway line between Bologna and Florence is part 
of the Italian Milan-Rome-Naples route of the High 
Speed/Capacity Train which constitutes the southern 
terminal  of the European rail network (Fig. 1). 
the total length of the alignment is more than 78.5 km. of 
which 70.6 km. (approximately 90% of the total length) is in 
twin track underground tunnel. 
the project involved the construction of: 
� 9 nine line tunnels with a cross section of 140 sq m. and 

lengths of between 528 m. and 16,775 m.; 
� 14 access tunnels for a total of 9,255 m.; 
� 1 service tunnel for a total of 10,647 m.; 
� 2 interconnecting tunnels for a total of 2,160 m. 
As already mentioned, the detailed and construction designs 
for all these works were performed using the ADECO-RS 
approach. the design and construction therefore took place in 
two distinctly different stages from a chronological 
viewpoint and more precisely by means of: 
� a survey phase, a diagnosis phase and a therapy phase at 

the design stage; 
� an operational phase and a construction monitoring phase at the construction stage. 
 
 
3. DESIGN 
 
3.1 The geological-geotechnical context (survey phase) 
 
The exceptional complexity of the ground involved was well known. It had already been tackled with 
great difficulty for the construction of the “Direttissima” railway line inaugurated in 1934 and 
currently in service. Consequently it was decided to invest a sum of € 84 million, 2% of the total cost 
of the project in the geological survey campaigns required for detailed design of the new high 
speed/capacity railway line. This provided a geological-geomechanical characterisation of the ground 
to be tunnelled that was very detailed and above all accurate. 
As is shown in Fig. 2, the formations are primarily of flyschoid, clay and argillite formations and loose 
grounds, at times with substantial water tables, accounting for more than 70% of the underground 
alignment, with overburdens varying between 0 and 600 m. Some of the formations also presented the 
problem of gas, always insidious and delicate to deal with. During the survey phase, the route was 
subdivided into sections with similar geological and geomechanical characteristics on the basis of the 
information acquired. Strength and deformation parameters were attributed to these as assumptions for 
the subsequent phases of diagnosis and therapy. 
 
 
 
 

Figure 1. Location of the work 



3.2 Predicting the behaviour of the rock and soil masses in response to excavation (diagnosis phase) 
 
It became immediately clear in the diagnosis phase that the tunnels to be constructed whether because 
of the different geotechnical characteristics of the ground or the widely differing overburdens would 
be driven under extremely different stress-strain conditions. 
The underground alignment was therefore divided into sections with uniform stress-strain behaviour as 
a function of the predicted stability of the core-face in the absence of stabilisation measures. This was 
performed on the basis of the geological, geotechnical, geomechanical and hydrogeological 
information acquired and of the results of the analytical and/or numerical calculations of stability 
performed. The sections were as follows: 
� stable core-face (behaviour category A; deformation phenomena in the elastic range, prevailing 

manifestations of instability: falling ground at the face and around the cavity); 
� core-face stable in the short term (behaviour category B; deformation in the  elastic-plastic range; 

prevailing manifestations of instability: spalling at the face and around the cavity); 
� core-face unstable (behaviour category C; deformation phenomena in the failure range: 

consequent manifestations of instability: failure of the face and collapse of the cavity). 
It was found from this analysis that 17% of the alignment would pass through ground which would 
have reacted to excavation with behaviour in category A, 57%, it was predicted would be affected by 
deformation phenomena in the elastic-plastic range of behaviour category B and finally approximately 
26% would have been characterised, in the absence of appropriate intervention, by serious instability 
of the core-face typical of behaviour category C. 
 
3.3 Definition of excavation methods and stabilisation measures (therapy phase) 
 
Once reliable predictions of the stress-strain behaviour of the ground when excavated had been formulated, 
the action required (preconfinement and/or ordinary confinement) to guarantee the formation of an arch 
effect as close to the profile of the excavation as possible, in each situation hypothesised, was identified for 

Figure 2. Survey phase: variability of strength and deformation parameters for the main formations 



each section of tunnel with uniform stress-strain behaviour. The advance methods (method of actual 
excavation, length of tunnel advance steps) and the most appropriate techniques for producing that action 
and guaranteeing, as a consequence, the long and short term stability of the excavation were then designed. 
The variable character of the ground, present to a greater or lesser extent in all the tunnels, meant that 
totally mechanised technologies were not advisable with the exception of the service tunnel of the Vaglia 
tunnel. The basic concepts on which the design of the tunnel section types were based were therefore as 
follows: 
1. full face tunnel advance always, especially under difficult stress-strain conditions: due to its peculiar 

static advantages and because large and powerful machines can be profitably used in the wide spaces 
available, it is in fact possible to advance in safety with excellent and above all constant advance rates 
even through the most complex ground by using full face advance after core-face reinforcement, when 
necessary; 

2. containment, where necessary, of the alteration and decompression of the ground that excavation 
causes by the immediate application of pre-confinement and/or confinement of the cavity (sub-
horizontal jet-grouting, fibre glass structural elements in the core and/or in advance around the cavity, 
fitted, if necessary, with valves for pressure cement injections, shotcrete, etc.) of dimensions sufficient, 
according to the different cases, to absorb a significant proportion of the deformation without 
collapsing or to anticipate and neutralise all movement of the ground at the outset; 

3. placing a final lining in concrete, reinforced if necessary, complete with the casting of a tunnel invert in 
short steps immediately behind the face where the need to halt deformation phenomena promptly was 
recognised. 

The most appropriate longitudinal and cross section types were therefore identified to deal with the 
different ground conditions. The range of geological and geomechanical  and stress-strain (extrusion and 
convergence) conditions within which they were to be applied was clearly defined for each type as well as 
the position in relation to the face, the intensity and the phases and  intervals for placing the various types of 
intervention (advance ground improvement, preliminary lining, tunnel invert etc). Very reliable work 
cycles based on a considerable number of previous experiences were drawn up from which precise 
predictions of daily advance rates could be made. Figure 3 shows the main section types adopted (there 
were 14 in all), grouped according to the type of behaviour category, A, B and C. Variations to be applied 
were designed for each section type for statistically probable conditions, the location of which could not, 
however be predicted on the basis of the available data (see example in Fig. 4). 
The identification of admissible variability in advance for each section as a function of the actual 
response of the ground to excavation, always and in any case, within the deformation ranges predicted, 
is a fundamental part of the ADECO-RS approach. It allows highly detailed definition of the design 
and at the same time the flexibility required for the useful application of ISO 9002 quality assurance 
systems during construction without impairment of the basic principles of such systems. By employing 

Figure 3. Mail design section types 



this method Non Conformities (i.e. differences between as built and design) are avoided which oblige 
partial redesign each time a change in conditions is encountered even if it involves only a minor 
change to the design. 
Each section type was analysed as a function of the loads mobilised by excavation as determined in the 
diagnosis phase, with regard to both the different construction phases and the final service phase by 
employing a series of calculations on plane and three dimensional finite element models in the elastic-
plastic range. 
Finally, precise specifications were formulated for the implementation of a proper monitoring campaign, 
which, according to the different types of ground tunnelled, would both guarantee the safety of tunnel 
advance and verify the appropriateness of the design and allow it to be optimized in relation to the actual 
conditions encountered. 
Detailed design also obviously concerned indispensable accessory works, such as portals, large 
chambers and access and service tunnels, which for the sake of brevity we will not dwell on here. 
 
 
4. TUNNEL CONSTRUCTION 
 
4.1 Type of contract 
 
The contract for the entire section of the railway between Bologna and Florence was awarded on a 
rigorous lump sum basis (€ 4,209 million) by FIAT S.p.A., the  general contractor, which accepted 
responsibility for all unforeseen events, including geological risks on the basis of the final design as 
illustrated above. It subcontracted all the various activities out to the CAVET consortium (land 
expropriation, design, construction, testing, etc.). 
 
4.2 Operational phase 
 
Immediately after the contract was awarded, the construction design of works began at the same time as 
excavation work (July 1996). 
Additional survey data and direct observation in the field generally confirmed the validity of the detailed 
design specifications, while the following minor refinements were made in the construction design phase: 

Figure 4. Section type variability as a function of the actual response of the ground to excavation 



• to deal specifically with particularly delicate stress-strain conditions a steel strut was introduced as a 
variation to section types B2 and C4 in the tunnel invert to produce much more rapid confinement of 
deformation. This modification of the B2 section type was found to be much more versatile and 
appropriate even for many situations where the core-face was unstable. Use of the heavier C section 
types was thus limited to the more extreme stress-strain conditions. 

• the effectiveness of core-face ground improvement using fibre glass structural elements was increased 
considerably by introducing an expansive cement mix to cement the fibre glass nails; 

• as a consequence of positive results acquired during the construction of tunnels on the Rome-Naples 
section of the same railway line, a section type B2pr was designed for underground construction of the 
Sadurano, Borgo Rinzelli and Morticine tunnels originally designed as artificial tunnels; 

• finally it was decided to replace section types B3 and C3, which involved the use of mechanical pre-
cutting with section C2 (ground improvement in the core-face and around it with fibre glass structural 
elements) better suited to the ground to be tunnelled. 

The final result of construction design was the definition of the following percentages of tunnel section type: 
• section type A: 20.5 %;  section type B: 57.5 %;  section type C: 22.1 %. 
In less than six years approximately 70.6 km. of running tunnel have been driven and lined, 100% of the 
total. Average monthly advance rates of finished tunnel were around 1,000 m. of finished tunnel with peaks 
of 2,000 m reached in March 2001, working simultaneously on 30 faces. 
Fig. 5 gives the production graphs for the different tunnels constructed. It can be seen that not only were the 
advance rates very high in relation to the type of ground tunnelled, but above all they were very constant, a 
sign of the excellent match between design and the actual reality encountered. Even for the Raticosa tunnel, 
driven under extremely difficult stress-strain conditions in the Caotic Complex formation consisting of the 
much feared scaley clays, average advance rates were never less than 1.5 m per day. Table 1 gives a 
comparison of daily advance rates forecast by the detailed design specifications for some section types 
and the actual advance rates achieved. 

Figure 5. Advance rates obtained in the different stress-strain conditions found 



Table 2 on the other hand gives the distribution of differences in section types between the detailed design 
specifications and the tunnel as built. Even if account is taken of the increased rigidity introduced to the B2 
section type, which made it possible to employ the type in many situations typical of behaviour category C, 
there was nevertheless a significant reduction in the use of the more costly section types in favour of more 
economical solutions. 
This result was to a large extent due to the exceptional effectiveness of the preconfinement methods 
employed even under large overburdens. It was the first time they had been used with overburdens greater 
than 500 m.. Some consider tunnel advance after first making the face-core more rigid as counter 
productive under large overburdens. However, if it is properly performed and the continuity of the action 
from ahead of the face back down into the tunnel is ensured, with the placing of a steel strut in the tunnel 
invert it is, as was demonstrated, extremely effective even with large overburdens and resort to the heavier 
section types was only necessary in the most extreme situations. Another reason for the greater use of 
section type A was that there are only minor differences between it and the B0 sections types such as 
the thickness of the final lining or the distance from the face at which the tunnel invert is cast. As a 
consequence, section type A was adopted in place of section types B0 or B0V, whenever the ground 
conditions allowed this to be done without risk (e.g. in long sections of the Vaglia tunnel where the 
presence of the adjacent service tunnel already built made the situation particularly clear). The 
differences found between the detailed design specifications and the tunnel as built did not reveal any 
sensational discrepancies, neither in terms of the overall cost of the works, which was a little less than 
budgeted under the detailed design specifications (~ -5%) nor with regard to construction times. While the 
contractor will benefit from the lower cost, a reward for the greater risk run by agreeing to sign a rigorously 
lump sum, all-in contract, the client and citizens will benefit from the punctual observance of time 
schedules because they will be able to use the new transport services without intolerable delays. 

TABLE 1. 

Section type Tender forecast advance rates 
[m. per day of finished tunnel] 

Actual advance rates 
[m. per day of finished tunnel] 

A 5.40 5 – 6 
B0 4.30 5 – 5.5 
B2 2.25 2.10 – 2.2 
C1 1.40 1.40 
C2 1.25 0.85 

C4V 1.25 1.63 

Figure 6. Borgo Rinzelli tunnel: the face during the 
advance under artificial ground overburden 

Figure 6. Firenzuola tunnel: the face 
reinforced with fibre glass structural elements 
inserted into micro jet-grouted columns 



4.3 The monitoring phase 
 
4.3.1 Monitoring during construction 
 
The particular nature and the importance of the project required a thorough monitoring programme both 
during construction and for the completed tunnel in service. 
The following was monitored during construction: 
� the tunnel faces by means of systematic geomechanical surveying of the ground at the face. The 

surveys were conducted to I.S.R.M. (International Society of Rock Mechanics) standards and gave an 
initial indication of the characteristics of the ground to be compared with design forecasts; 

�  the deformation behaviour of the core-face by measuring both surface and deep core-face extrusion, 
with measurements carried out taken as a function of the different behaviour categories. Systematic 
measurements of this kind under difficult stress-strain conditions are crucial: in fact monitoring 
convergence alone, which is the last stage of the deformation process, under these conditions is not 
sufficient to prevent tunnel collapse. Extrusion, on the other hand is the first stage in the deformation 
process and if it is kept properly under control will allow time for effective action to be taken. 

� the deformation behaviour of the cavity by means of systematic convergence measurements; 
� the stress behaviour of the ground-lining system by placing pressure cells at the ground-lining interface 

and inside the lining itself, both in the preliminary and the final lining. 
The results of monitoring activity during construction guided design engineer and the project management 
in deciding whether to continue with the specified section type or to modify it according to the criteria 
already indicated in the design, by adopting the “variabilities” contained in it. Obviously, in the presence of 
particular conditions that were not detected at the survey phase and therefore not provided for in the design, 
which can occur, it is always possible to design a new section type. This method of proceeding allowed the 
uncertainty connected with underground works to be managed satisfactorily even with a rigorously lump 
sum contract like that between CAVET and TAV. 
Most of the instrumentation already used during construction, and connected to automatic data acquisition 
systems will continue to be employed for monitoring when the tunnel is in service. The automatic data 
acquisition system can be interrogated at any moment in the life of the works to obtain data and verify the 
real behaviour of the tunnels and compare it with design predictions. 
 
 
 
 
 
 
 

Table 2 



5. CONCLUSIONS 
 
New pre-confinement techniques such as horizontal jet-grouting, full face mechanical pre-cutting, advance 
core reinforcement using fibre glass structural elements have certainly produced a technological leap ahead in 
the tunnelling field similar to that which occurred at the beginning of the twentieth century with the 
introduction of cavity confinement techniques such as shotcrete, steel ribs and steel anchors, allowing 
previously impossible conditions to be tunnelled with success. 
Nevertheless, as in the last century, when design and construction engineers had to make an effort to abandon 
old theories and practices in favour of more efficient and more adequate methods in order to reap the full 
benefit of the potential offered by the new technologies, they must again make the same effort. 
The experience acquired in the construction on time and to budget of this project to cross the 
Apennines with a new high speed/capacity railway line, which was exceptional in terms of its size and 
the heterogeneity and difficulty of the ground demonstrates that a more aware and more correct use of 
new technologies can open up exceptional new prospects for tunnelling and make it finally possible to fully 
industrialise it and thereby produce that certainty over construction times and costs which until only recently 
had been lacking. This is, however, on condition that the technologies are employed in an integrated manner, 
in the framework of design and construction approaches like ADECO-RS and consistently with the principles 
that generated them. 
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Figure 7. The face of the Vaglia tunnel in the Monte Morello Formation (limestones, marls and 
sandstones ) 
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